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Abstract—Constitutive relations are developed for linear and non-linear incompressible, two-phase
composites. The second phase is assumed to be comprised of spheroidal inclusions, and both
isotropic composites (containing randomly oriented inclusions) and transversely isotropic com-
posites (containing aligned inclusions) are examined. Constitutive relations are established first for
linearly elastic constituents and dilute concentrations of inclusions. Corresponding (approximate)
constitutive relations applicable for non-dilute concentrations of inclusions are then obtained using
a differential self-consistent scheme. Next, constitutive relations for noa-linear matrix materials are
developed using a procedure recently introduced by Ponte Castaneda (. Mech. Phys. Solids (199 1D)].
The procedure uses a variational framework to exploit the constitutive relations developed for linear
matrix behavior in order to obtain approximate results for non-lingar matrix behavior, The results
obtaincd are rigorous bounds on the behavior of the composites when the concentration of inclusions
is sufliciently small, and are ostimates for the behavior at larger concentrations of inclusions. The
constitutive relations established for linear and non-lincar composites are used to examine the effect
of inclusion shape on the stiffness of composites, and a wide ringe of inclusion shapes ranging from
thin disk-shaped inclusions to slender acedle-like inclusions is considered.

1. INTRODUCTION

The mechanical properties of a material may be enhanced through the introduction of a
sccond phase material. Among the propertics of interest is the stiffness of the composite. It
should be expected that the introduction of a (well bonded) second phase which has a
stiffness greater than the matrix material will give rise to a composite material which has a
net stiffness farger than that for the pure matrix material. The amount of stiffening which
is achieved in this way depends, naturally, on the relative stiffness of the second phase and
its volume fraction in the composite, but it also depends on the shape of the second phase
inclusions.

For lincarly elastic constituents, there have been many studies performed to determine
bounds or estimates for the moduli of two-phase composites (sce, e.g., the review articles
of Hashin, 1983 Willis, 1983), but there have been relatively few efforts aimed at exploring
the effect of particle shape on the stiffness of the composite. The first appears to be the
study by Wu (1966), who used the sclf-consistent scheme developed by Budiansky (1965)
and Hill (1965) to obtain estimates for the moduli of composites in which the inclusions
are randomly oriented. He explicitly examined the case of spherical inclusions and the
limiting cases of flat platelets and infinitely long circular cylindrical inclusions, concluding
that the platelets give rise to the largest stiffening effect. Tandon and Weng (1984) examined
the effect of inclusion aspect ratio on the moduli when the inclusions are aligned, and later
Tandon and Weng (1986) extended the work to the case of randomly oriented inclusions.
In their studics, the Mori-Tanaka (1973) procedure was used to obtain estimates for the
moduli of specific two-phase systems of interest.

For non-lincar matrix materials, procedures for obtaining bounds on the constitutive
behavior have recently been developed (c.g. Ponte Castaneda and Willis, 1988; Ponte
Castancda, 1991) and these have been used to examine composites comprised of non-linear
matrix materials containing spherical inclusions. The effect of inclusion shape on the stiffness
of non-linear composites has been examined by Lee and Mear (1991) for the case in which
the inclusions are aligned. They obtained accurate constitutive relations for power-law
matrix materials containing rigid spheroidal inclusions, but their analysis was restricted to
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axisymmetric loading of the composite (with the symmetry axis of the loading coinciding
with the direction of alignment of the inclusions). Approximate constitutive relations for
aligned and randomly oriented inclusions in a plastically deforming matrix have also been
developed recently by Zhuo and Weng (1990) and Qiu and Weng (1990), respectively.

The purpose of the present investigation is to give a more comprehensive examination
of the effect of inclusion shape on the stiffness of two-phase linear and non-linear composites.
To do so. we consider inclusions which are prolate or oblate spheroids. as indicated in Fig.
I, and we examine the full range of inclusion shapes from thin disk-like inclusions to slender
needle-like inclusions. Attention is focused on inclusions which are stiffer than the matrix
material, and a wide range of contrasts in phase moduli is examined in order to fully discern
the role of inclusion shape on the stiffness of binary systems.

In the case of lincarly elastic constituents, both phases ure assumed to be isotropic
and incompressible. Exact constitutive relations are developed for dilute concentrations of
inclusions, and these are used in conjunction with a differential self-consistent scheme to
obtain approximate constitutive relations applicable at higher concentrations of inclusions.
The results for lincar composites then form the basis for obtaining constitutive relations
for incompressible, non-linear two-phase composites. The method used to make the exten-
sion to non-linear matrix behavior was developed by Ponte Castaneda (1991) and is
based on a variational procedure. In his study. Ponte Castaneda obtained estimates for the
constitutive behavior of non-linear matrix materials containing spherical voids or inclusions.
In this work, we usc it to obtain rigorous bounds on the constitutive behavior of power-
law matrix materials containing a dilute concentration of aligned or randomly oriented
rigid spheroidal tnclustons, as well as to obtain estimates for the constitutive behavior of
these two-phase systems when the concentration of inclusions exceeds dilute levels, In order
to assess the accuracy of the constitutive relations obtained with the variational procedure,
the results obtained for aligned inclusions are contrasted with accurate results presented
by Lee and Mear (1991),

In the analysis, use s made of constitutive potentials rather than working directly with
the tensorial components of stress and strain. The potential employed is the potential of
the stress, ¢, defined such that £ = d¢/da. The potentials for the materials comprising the
matrix and the inclusions are denoted as ¢, and ¢, respectively, and the behavior of the
two constituents arc fully characterized in terms of these potentials. The specific forms of
the potentials for lincarly elastic material behavior and for non-linear matrix behavior will
be specified further below.,

(b)

Fig. 1. Schematics of oblate inclusion with major semi-axes of length ¢ and minor semi-axes of

length & (a) and prolate inclusion with major semi-axis of length « and minor semi-axes of length

h (b). Coordinate system [, .. X} is a fixed reference frame, and {x,. v, x,} is a local coordinate
system with the v, axis directed along the axis of symmetry of the inclusion.
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To describe the behavior of the composite in terms of the potentials for the constituents,
consider a representative block of material which has volume ¥/, and which contains a
distribution of spheroidal inclusions. Let S, denote the outer surface of the block, and
assume that tractions L -n are prescribed on §,, where n is the outwardly directed unit
normal to the surface and I is the macroscopic stress tensor. The macroscopic strain E is
given in terms of the displacement u on S, by (Hill, 1967)

1

E= 37

f W®n+n@u)dS (D
s,

and the potential for the composite @, which has the property that E = ¢®/0Z, is given by

1
®®) =5 L bdv. @)

In this relation, ¢ = ¢,, in the portion of the volume occupied by the matrix and ¢ = ¢, in
the remainder of the volume.

The behavior of the composite is known once the potential for the composite ® has
been determined. The quantity which is required in order to estimate this potential is the
change in f;»qs dV resulting from the introduction of a single inclusion into an unbounded
region of the matrix material subject to a prescribed uniform remote stress Z. [t is fairly
cvident that this is the quantity which is required to establish the macroscopic potential
when the concentration of inclusions is dilute. In this case the inclusions do not interact,
and the contribution from cach inclusion contained in ¥, can be established by treating the
incluston as if it were isolated (see, c.g.. Budiansky and O’Connell, 1976; Duva and
Hutchinson, 1984). Estimates of the composite properties for non-dilute concentration of
inclusions can also be made based on this quantity through the use of a self-consistent
method, as discussed further below,

Thus, an essential step in the analysis is the determination of the change in jde dv
associated with the introduction of an isolated inclusion into an unbounded region of the
matrix material. For the case of linear constituents, this quantity will be determined using
Eshelby’s (1957) equivalent inclusion method. Estimates for the moduli of the linear com-
posites will then be constructed, and the role of inclusion shape on the stifTness of the two-
phase isotropic and transverscly isotropic composites will be examined. For non-linear
matrix behavior, the accuriate solution of the kernel problem for an isolated inclusion is
very difficult. Lee and Meuar (1991) have recently solved the non-lincar kernel problem for
cascs of axisymmoetric deformation (in which the axis of symmetry of the inclusion is aligned
with the axis of symmetry of the loading), but results for arbitrary loading (or, equivalently,
arbitrary orientation of the inclusion) are not presently available. In this work, we treat
general loading/orientation by means of an approximate construction which avoids the
need for the explicit solution of the kernel problem. The procedure will be discussed after
constitutive relations have been established for linearly elastic composites.

2. LINEARLY ELASTIC COMPOSITES

In this section, we consider two-phase composites comprised of linearly elastic, iso-
tropic and incompressible constituents. We assume that the shear modulus for the inclusions,
G, is larger than the shear modulus for the matrix material, G,,, so that the inclusions serve
as stiffening agents. As mentioned above, the analysis will be carried out in terms of
constitutive potentials rather than working directly with the tensorial components of stress
and strain. The potential of the stress which characterizes the matrix material is the
(complementary) strain energy density function,
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.
d),,,(o') = 6G .. (3)

where 6. = (36":6",2)' * is the effective stress and ¢ is the stress deviator. The potential of
the stress for the inclusion material is given by (3) with G, replaced by G,.

The inclusions are assumed to be prolate or oblate spheroids with major semi-axis (or
axes) of length ¢ and minor semi-axis (or axes) of length A, as shown in Fig. . The
shape of the inclusions is described by the aspect ratio ¢ = «/b, which ranges from one
(corresponding to a spherical inclusion) to infinity.

In the development to follow. use will be made of two Cartesian coordinate systems.
The [ X, X, X! system indicated in Fig. 1 will serve as a fixed reference frame. and the
(X1 vo. ) system will be a local frame attached to an inclusion. In this local frame, the x;
axis is directed along the axis of symmetry of the inclusion. and the orientation of the x|
and x, axes will be specified further below in a way which proves particularly convenient
for the analysis.

2.1, Structure of constitutive relations

As already emphasized. the quantity which is needed in order to estimate the potential
for a composite containing a dispersion of spheroids is the change in L-(/) dV resulting from
the introduction of a single inclusion into an infinite region of the matrix material. For a
single inclusion of unit volume, we denore this quantity as d®/d¢ and, for a fixed remote
stress state X, it depends on the aspect ratio of the inclusion, the orientation of the inclusion
with respect to the reference frame, and the moduli G, and G,. The structure of the
macroscopic potential in terms of this quantity will be established in the remainder of this
section, and in Section 2.2 the solution of the kernel problem for an isolated inclusion will
be obtained using Eshelby's equivalent inclusion method. The structure of the constitutive
relation for isotropic composites is discussed first, after which the form of the constitulive
relation for transversely isotropic composites is presented.

211, Randomly oriented inclusions, Consider first the case of 4 matrix material con-
taining a dilute concentration of randomly oriented spheroidal inclusions of a given aspect
ratio, as shown schematically in Fig. 2a. The potential for the composite is

. . <()"|)>
D)= ¢, (X)+c( . 4)
oc

where (0d/dc¢) denotes the average of 0®/dc¢ over all possible orientations, and ¢ is the
volume fraction of inclusions. Note that the quantity ¢{3d®/dc) represents the change in
macroscopic potential for a dilute dispersion of spheroids of a given aspect ratio, whether
or not the inclusions cach have the same volume (provided. of course, that the distribution
of inclusions is such that the composite material is macroscopically homogencous).

Since the inclusions are randomly oriented and the phases are incompressible, the
overall response of the composite is isotropic and completely characterized by a single shear
modulus for the composite, G. The potential for the composite takes the form

oE) = ! z!+-<‘m’>— ' 5 (5)
® =66, " \oc/ Zec™

where Z, is the macroscopic cffective stress. The quantity (3®/dc) can be expressed as

o 9 o
<>> = ~6G, ©

where the function g = ¢(Z. ') depends on the aspect ratio of the reference inclusion and
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(b)

Fig. 2. Schematic of composite in which sccond phase inclusions are randomly oriented (a) and
aligned (b). In casc (a) the composite is macroscopically homogencous and isotropic, while in case
(b) it is macroscopically homogencous and transversely isotropic.

the contrast in phase moduli I' = G,/G,,. but not upon the remote loading. It must be
determined through the solution of a boundary value problem for an (arbitrarily oriented)
isolated inclusion followed by a suitable averaging over all oricntations of the inclusion;
details will be given in Section 2.2. The shear modulus for a composite in which the
concentration of inclusions is dilute is then given by

Gn
?’r = | —qg. (7)

The dilute limit neglects interaction between inclusions, so that its validity is limited
to small volume fractions ¢. To obtain an approximation for G which is valid over a
larger range of inclusion concentrations, we employ the differential self-consistent scheme
described by McLaughlin (1977).

Toward developing a differential self-consistent estimate for G, consider increasing the
inclusion concentration by a differential amount while retaining the same remote loading.
The resulting increment in @ is

l b
d(D = - g&—‘j Z, dG (8)

According to the differential self-consistent scheme, d® can also be evaluated using (5 ®/éc)
for the introduction of a differential amount of the second phase into an infinite region of
matrix material with properties of the composite at the current stress level Z,. The cor-
responding change in @ is estimated as
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_ 1 od L 1 9 e,
dd)-(l-—(‘) <~E>dc—- (l_()é"G-..L d( (9)

where (6) has been used with G, replaced by G. The term (1 —c¢) is included to account, in
an approximate way, for the fact that a portion of the material replaced under the operation
was already associated with the second phase (see McLaughlin, 1977). Combining (8) and
(9) leads to a simple differential equation for G which can be integrated directly to obtain

%=(1_¢-)v. (10)

The constant arising during the integration has been determined from the condition that
lim,_, G = G,,. Note that both the dilute and differential self-consistent approximations
are fully specified once g is known. The determination of this function is discussed in Section
2.2 after the structure of the constitutive relation for the aligned inclusions has been
developed.

2.1.2. Aligned inclusions. Now consider inclusions which are aligned as shown
schematically in Fig. 2b, and which are distributed in such a way that the composite is
(macroscopically) transversely isotropic. As mentioned above, the x; axis of the local
coordinate system {x,, x,, x,} is directed along the axis of symmetry of the inclusion. The
direction of x, within the median plane can be chosen freely, and it will emerge that the
most convenicnt choice for it is such that the in-plane normal stress components in this
local system are equal. That is, if {e,, e, €,} arc the unit basc vectors along the coordinate
dircctions, then we choose x| such that £,;, = Z,, where £, =¢,° X ¢, and Z,, = e,° E-e..
It is always possible to determine the direction of e, relative to the fixed coordinate system
such that this condition is met.

The macroscopic potential can be expressed in the form

[ I I
OE) = — I+ —-Z 4+ - L}
() 2F, 6G, " 6G, "

(1
where £,, G, and G,, are three moduli which complctely describe the behavior of the
composite, and the stress quantitics which appear are given in terms of the components of
the macroscopic stress tensor in the local coordinate system as (also see Appendix A)

Ll=(Z,-,)% Z;=3%Z} Il =3CEhL+I5). (12)

These quantities can be interpreted as effective stresses associated with the axisymmetric
stressstate {Z,, = Z,,, Z,,}, thein-plane shear stress £, ,, and the out-of-plane shear stresses
{Z,5 Z,3}, respectively. The modulus £, is Young's modulus for uniaxial stressing along
the x,-direction, G,, is a shear modulus representing the response of the solid to in-plane
shear stress X,,, and Go, is a shear modulus associated with the out-of-plane shear stresses
Z,3and Z,,.

The change in I.,¢ dV resulting from the introduction of a single inclusion of unit
volume into an unbounded region of the matrix material can be expressed similarly :

A

o 1o g2 Gor 5o
oc 6G,, L 6G,, Z, 6G,, Zop - (3

Once the functions g, = g.(¢, 1), g, = 9,(¢, T) and g,, = ¢,,(£.T") have been established,
the potential for a composite containing a dilute dispersion of aligned inclusions can be
computed as
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oD
O(I) = %(Z)-H‘-é; (14)

and the three moduli for the composite determined from

3G, G., Gn
£ = l~cg,. 5—= I —~cg,. = l—cg,,. (15a,b,c)

ip op

The determination of the functions g,. g,, and g,, will be taken up in the next section.

Estimates for the moduli of composites in which the concentration of inclusions exceeds
dilute levels can be obtained using a self-consistent scheme which utilizes the solution for
an isolated inclusion in a transversely isotropic matrix material. The resulting estimates are
quite cumbersome (c.g. McLaughlin, 1977), and here we choose instead to develop simple
relations for moduli by employing the solution to the kernel problem for an isotropic matrix
in conjunction with the differential self-consistent scheme. The method is applied separately
to determine each of the three moduli. This is done by considering purely axisymmetric
loading (in the local coordinate frame) to find E,, a stress state consisting of only in-plane
shear to determine G, and, finally, a stress state in which only out-of-plane shear stresses
act in order to establish G,,. Establishing the moduli in this way is possible because the
three separate modes of deformation considered in determining them are fully uncoupled.
The results of the calculations are

3G, G. G
E = (I -¢)%, —G; = (1 =¢)’, a; = (1 =c)% (16a.b.c)

and it is casily verified that these relations reduce to (15) for dilute inclusion volume
fractions. For large volume fractions, the relations (16) arc only estimates of the moduli,
and no attempt has been made here to assess the range of volume fractions for which they
provide an accurate characterization of the composite material. Such an assessment would
necessarily involve direct numerical calculations of the moduli for non-dilute (e.g. periodic)
distributions of inclusions,

The effective moduli for the transversely isotropic composite containing aligned
spheroidal inclusions can be estimated once the functions g,, ¢, and g,, have been estab-
lished. This is similar to the case of the isotropic composite in which only the function g
remained unknown. These functions depend on the aspect ratio of the inclusions and the
modulus contrast I, but not upon the remote loading. They are most readily established
using Eshelby’s equivalent inclusion method, as discussed next.

2.2. Determination of g-functions

In the previous section, the forms for the macroscopic potential and moduli for an
incompressible linearly elastic matrix strengthened by a dispersion of randomly oriented
spheroidal inclusions or by a dispersion of aligned inclusions was established. In the former
case, there was a single scalar function g which remained to be determined, and for the
transversely isotropic composite there were three functions g,, g,, and g, which required
specification. To determine these functions, a boundary value problem must be solved for
a single oblate or prolate spheroidal inclusion of unit volume and aspect ratio { embedded
in an infinite region of matrix material. This is most readily carried out using Eshelby’s
equivalent inclusion method. We review the method in the context of the current problem,
and then we discuss the calculation of the g-functions.

To apply Eshelby's method, first consider an infinite region of the matrix material
which is free of a physical inhomogeneity and absent of external loading. Imagine that the
region ¥, (which an inhomogeneity would occupy if it were present) is allowed to undergo
an unconstrained transformation strain &”. The corresponding constrained strain within ¥,
is uniform and given by &° = S:¢&” where S is Eshelby’s tensor. Imagine now that a remote
stress I with deviator I’ is also present. Then the total strain within ¥V, is &' = (E+¢°)

SAS 28:8-D
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where E = £’/(2G,,). The objective is to choose the transformation strain such that the total
strain and the stress (deviator) within ¥, are precisely what they would be within the
inhomogeneity were it present. Denote the actual strain within the physical inhomogeneity
as ¢/. Then the transformation strain must be seclected such that =g’ and
G, [e°* —e"] = Gg', where the term in the brackets is the elastic part of the strain g%,
Combining these two conditions, and using Eshelby's tensor to relate the constrained strain
to the transformation strain, we obtain

(CT—DS+1]:¢" = —(IT-1E (17)

where I is the modulus contrast defined previously and 1 is the fourth order identity tensor.
The components of Eshelby’s tensor are known in terms of clementary functions for
spheroidal regions V;; the values relevant to the current investigation are listed in Appendix
Ainterms of £,

To affect the inversion of (17). first consider the component associated with E,;, where
the indices indicate components relative to the local coordinate system {x,. x..x,}:

(r—l)swjff.,r"*‘c,\r.\ = —(F=1E;,. (18)
Now, because the coordinate system has been selected such that £, = E,,, and because
the constituents arc incompressible, it follows that &7, = —2&7, = —2¢{, [this can be scen

dircctly through inspection of (17) along with the propertics of S]. We then obtain

T

(r-nEy,
£y :

U A LAt 9;
(F21(S 0= Si =1 (1%)
where the property that S5, = S332, has been used.

Next, consider the equations associated with £, £, and E,,. The equations involve
only the transformation strains &],, £]y and €7, respectively (i.c. they are not coupled with
other components of &', except those which arc equal by symmetry of the tensor) so that
we immediately obtain

_(T-DEy,
Z(I—r)S:_‘:]-l )
(19b,c.d)

. (T = 1E,, . (T=DE,

B R L

2(1=0)S 22— 17 2(1-D)8 5= 1

T
12 3

Now that the transformation strain has been determined in terms of the macroscopic
strain (or, equivalently, the macroscopic stress deviator), the change in L-rj) dV due to the
introduction of the single inclusion of unit volume into the infinitc block of matrix material
can be calculated as (Eshelby, 1957)

s =i 20
éc 7 -
To use this relation to calculate g,. consider an axisymmetric stress state’{Z | = Z.,, Z4;}.
It then follows from (13), (192) and (20) that
r-1)
9u(&. 1) = ( 2n

(C=D(S3301=Sy5m) =1

Similarly, we obtain
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r-n

P — 9
=08l (22)

g (s D)=
and

-1
gp(2D) = 5— LD 23)

21-1)Sy =1

The components of Eshelby’s tensor which enter into these expressions depend upon
whether the inclusion is a prolate or oblate spheroid and upon the aspect ratio & (see
Appendix A).

This completes the specification for the composite containing aligned inclusions. For
the composite containing randomly oriented inclusions, the function g must be obtained
by a suitable averaging over all possible orientations of an inclusion. Because the constitutive
potential for this case, eqn (5). depends only on the effective stress, it is sufficient to consider
a single macroscopic stress state. A convenient choice is uniaxial tension. Let T be the level
of uniaxial stress assumed to be dirccted along the X5 axis of the fixed reference coordinate
system. For this stress state, the single angle 0 between the X ;-axis and the xy-axis (see Fig.
1) suffices to specify the orientation of the inclusion. An average over all possible orientations
of the inclusion then takes the simple form

(-):J‘W(-)sin()d(). (24)

Now, the components of £ = 7T'i, ® i, in the local coordinate system (with x; chosen
as specified above) can be expressed in terms of the angle ¢ and the tensile stress 7, and the
results inserted into (13) to obtain

S T? . . "
%—5 = — geg (B eos 0+1)g,+ 12, sin* 0+ 129, sin’ 20}. (25)
’I'l

Then, by carrying out the average indicated by (24) and noting that (25) depends only on
the effective stress which, for uniaxial tension, is X, = T, we obtain

9= 49.+29,+29.,) (26)

Note that for the special case of spherical inclusions, ¢ = g, = ¢, = ¢.,. This follows since
the sphere has no preferred oricntation and the change in j‘..rde depends only on the
effective stress X.,.

2.3. Effect of inclusion shape on stiffness

Constitutive relations have been established for composite materials comprised of
linearly elastic, isotropic and incompressible constituents in which the sccond phase consists
of spheroidal inclusions. Both isotropic composites (containing randomly oriented
inclusions) and transverscly isotropic composites (containing aligned inclusions) have been
treated. In this section we use these constitutive relations to examine the role that inclusion
shape plays in the resulting stiffness of the composite material. Composites in which
the inclusions arc randomly oriented are examined first, followed by an examination of
transversely isotropic composites.

2.3.1. Randomly oriented inclusions. Consider first a dilute concentration of randomly
oriented inclusions. A measure of the stiffening effect of the inclusions is the change in the
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constitutive potential due to the presence of the inclusions (1.e. the change in strain energy).
A® = ® — (X)), which is given by

1 .
= —g—TF%"2 2
AD (g6G,,, )25 (27)

Since A® is negative, the larger the magnitude of this quantity, the larger the stiffening
effect of the inclusions.

Now, let the composite containing a dilute concentration of spherical inclusions serve
as a reference to which other composites containing the same volume fraction of second
phase will be compared, and let A®,,, denote the change in potential for this reference
composite. Then the ratio AD/AD,,, represents the increase in stiffness resulting from a
given dilute volume fraction of non-spherical inclusions relative to the increase in stiffness
resulting from the same volume fraction of spherical inclusions. This quantity can be
expressed in terms of the shear modulus for the composite containing non-spherical
inclusions, G, and the shear modulus for the composite containing spherical inclusions,
Gsph‘ as

AD 1-G,/G

= o)
A(Ds‘ph - Gm/Gﬁph (-8)

and is plotted in Fig. 3 as a function of the contrast in phase moduli for several inclusion
aspect ratios.

From the figure it is cvident that, for a given inclusion concentration and contrast in
phase moduli, the larger the aspect ratio of the inclusions, the stiffer is the composite. Tt is
also evident that the degree to which the shape of the second phase inclusions affects the
composite stiffness depends strongly on the contrast in phase moduli. For example, when
I" = 2, oblate inclusions with an aspect ratio of 100: 1 give rise to an increase in stitfness
which is approximately 10% greater than the corresponding increase in stiffness achicved
with spherical inclusions. Whercas, when I' = 10, oblate inclusions with an aspect ratio of
100: 1 result in an increase in stiffness exceeding two and a half times that achieved with
spherical inclusions.

Over the entire range of aspect ratios and contrasts in phase moduli displayed in Fig.
3, a greater increase in stiffness is achieved with oblate inclusions than with prolate inclusions

3.0 T T T T T T T T T
f=22 ——
£=5 ——mmmm-
AN
2.5 N £210 everrreneenes
RS
~ -
N =20 —————
Ad \\ =2
s B N £=50-—-—-—-
Alth.O_ N ¢ )

-
o

Fig. 3. Change in constitutive potential resulting from randomly oriented inclusions, AD = ®— ¢,
normalized by change in potential resulting from spherical inclusions. A®,,, as a function of
contrast in phase moduli I, Comparison made at the same (arbitrary) dilute volume fraction of
inclusions, and for several aspect ratios §. Values of AD/AD,, greater than onc indicate that the
composite is stiffer than it would be if inclusions were spherical rather than spheroidal.
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when the comparison is made at the same aspect ratio. For larger contrasts in phase moduli,
however., there may exist a range of aspect ratios for which prolate inclusions are to be
preferred as stiffening agents, as can be seen from the results shown in Fig. 4. In the latter
figure. A® 'Ad_, is presented as a function of ¢ for several values of I". Note that for I' =
(100. x ). there does in fact exist a range of aspect ratios (dependent upon I') over which
prolate inclusions provide more stiffening than do oblate inclusions.

A careful examination of the behavior of A®/A®,,, as a function of aspect ratio and
contrast in phase moduli reveals that for [ < 66.8, oblate inclusions are always to be
preferred to prolate inclusions as stiffening agents when the comparison is made at the same
aspect ratio. When I' = 66.8, however, prolate and oblate inclusions with aspect ratio
& = 18 give rise to the same increase in stiffness, and for contrast in phase moduli I' > 66.8,
there exists a range of aspect ratios. say ¢, < & < ¢, over which prolate inclusions give rise
to more stiffening than do oblate inclusions. As a particular example, consider again the
case [ = 100 displayed in Fig. 4. In this case, it is found that the lower and upper limits of
the range of aspect ratios over which prolate inclusions are to be preferred to oblate
inclustons as stiffening agents are &, = 10.5 and &, = 48, respectively. It is also found that
the aspect ratio for which the most benefit is to be gained from prolate inclusions relative
to that to be gained from oblate inclusions is ¢ & 29, and that the corresponding value of
AD/AD, for prolate inclusions is approximately 37% larger than that for oblate inclusions.
More gencrally. it is found that the larger the contrast in phase moduli, the larger is the
difference (S, &), and the larger is the maximum (positive) difference between AD/AD,,
for prolate and oblate inclusions. Indeed, as T ranges from I = 66.8 to I = 20, the value
of &, decrcases monotonically from & = I8 to & = 7.5, the value of &, increases mono-
tonically from &, = 18 to ¢, = x. and the maximum increase in stiffness to be gained
from prolate inclusions relative to that to be gained from oblate inclusions increases
monotonically from zcro to infinity,

Now consider the differential self-consistent estimate for the shear modulus of the
composite given by (10). The estimate for G,,/G is shown in Fig. Sa d, as a function of
aspect ratio and volume fraction, for [ = (5, 10, 100, 20). Notc that the results displayed in
these figures represent the total stitfening effect of the second phase inclusions, and not the
effect relative to a composite containing spherical inclusions.

When 7 = 5 and the volume concentration is 5% (Fig. Sa), oblate inclusions with an
aspect ratio of 100: 1 result in a composite shear modulus of G/G,, = 1.14, while spherical
inclusions lead to G/G,, = 1.08. In this instance, the ratio of the increase in shear modulus
resulting from the oblate inclusions to that achieved with spherical inclusions is 1.75. When
the volume concentration is increased to 20%, oblate inclusions with an aspect ratio of
100: | and spherical inclusions give rise to G/G,, = 1.78 and G/G,, = 1.41, respectively. At
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Fig. 4. Ratio AD/Ad,, for randomly oricnted inclusions, as a function of aspect ratio § and modulus
contrast I".
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Fig. 5. (a), (b) Differential scll-consistent estimate of G,/G given by (10), as a function of aspect
ratio & and volume fraction of inclusions for T = § (a) and T = 10 (b).

this larger volume fraction, the ratio of the increase in shear modulus resulting from the
oblate inclusions to that achicved with spherical inclusions is 1.95. Thus, the effect that the
shape of the inclusions has on the stiffness of the composite is enhanced by an increase in
the volume fraction of the inclusions.

From the results shown in Fig. 5a-d, it is clear that the cffect of inclusion shape on
the stiffness of the composite is more pronounced as I is increased, as has already been
noted for dilute concentrations of inclusions. At a fixed volume fraction of inclusions and
a fixed contrast in phase moduli, the larger the aspect ratio, the greater is the stiffness of
the composite. As a specific example, consider I' = 10 and a volume fraction of 20%. From
Fig. 5b it is seen that thin disk-shaped oblate inclusions with aspect ratio 100: 1 give rise to
103% more stiffening than do spherical inclusions, whercas slender needle-like prolate
inclusions with this same aspect ratio give rise to 29% more stiffening than do spherical
inclusions. From the figures, it is also scen that for the modest moduli contrasts of I' = (5, 10),
oblate inclusions are to be preferred as stiffening agents, while for the moduli contrasts of
[ = (100, o) there is a range of aspect ratios for which prolate inclusions are to be preferred
as stiffening agents. In fact, it follows from the structure of the estimate (10) that this range
of aspect ratios is identical to that for dilute concentrations of inclusions.

2.3.2. Aligned inclusions. We now examtine the behavior of composites containing
aligned inclusions. The composites are transversely isotropic and incompressible, and hence
three moduli are required to fully characterize their multiaxial stress-strain response. The
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Fig. 5. (¢), () Differential self-consistent estimate of G,/G given by (10), as a function of aspect
ratio § and volume fraction of inclusions for I = 100 (¢) and T = o0 (d).

moduli which have been introduced are a Young's modulus £, associated with uniaxial
tension along the direction of alignment of the inclusions (i.e. along the x;-axis), and two
shear moduli G,, and G,, associated with in-plane shearing and out-of-plane shearing,
respectively. For dilute concentrations of inclusions these moduli are given by (15), and
estimates for them when the concentration is non-dilute are given by (16). In this section
we examine how cach of these moduli are affected by the shape of the second phase
inclusions. Since the predictions are qualitatively similar for dilute and non-dilute con-
centrations of inclusions, only results for dilute concentrations will be presented.

To explore the effect of inclusion shape on the axial Young's modulus £,, consider
axisymmetric deformation of the composite with the symmetry axis of the loading parallel
to the x;-axis. As for the casc of randomly oriented inclusions, it is convenient to examine
the ratio A®/Ad,,, (in which A® and AQ®,,, are computed at the same dilute volume
concentration) since this quantity is independent of ¢. In Fig. 6 this ratio is displayed as a
function of modulus contrast I < 10 for several aspect ratios, and in Fig. 7 it is displayed
for several modulus contrasts as a function of aspect ratio. It is apparent from these figures
that, for the range of modulus contrasts and aspect ratios considered, prolate inclusions
are always more potent stiffening agents than are oblate inclusions when the comparison
is made at the same aspect ratio. This is, in fact, the case for the full range of aspect ratios
and any contrast in phase moduli exceeding unity. From the figures, it is aiso apparent that
the difference between the stiffening achieved with prolate inclusions and that achieved with
oblate inclusions becomes more pronounced as the modulus contrast is increased.
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Fig. 6. Ratio AD/AD,y,, for aligned inclusions and axisymmetric loading, as a function of modulus
contrast I and aspect ratio &.

To examine the effect of inclusion shape on the in-plane shear modulus G, consider
in-plane shearing of the composite (i.e. assume that the only component of stress acting in
the local {x,.x,, x,} coordinate frame is X,;). For this loading, the difference between the
behavior for oblate inclusions and for prolate inclusions is dramatic, as can be seen from
Fig. 8. This figure displays A®/Ad,,, computed for dilute concentrations of inclusions. It
is clear that only oblate inclusions provide stiffening which cxceeds that achieved with
spherical inclusions, and the greatest increase in the resistance to in-plane shearing is
achicved with thin oblate inclusion. Note also that for prolate inclusions, there is little
sensitivity of the in-plane shear modulus to the shape of the inclusions when the aspect
ratio exceeds & = 5.

Finally, we examine the cffect of inclusion shape on the out-of-planc shear modulus
G.,. To do so, we consider out-of-plune shearing of the composite in which the only non-
zero components of stress acting are £, and Z,;. Results for A®/Ad,,, computed at dilute
concentrations of inclusions are shown in Fig. 9. It is apparent from the figure that, in
general, the larger the aspect ratio of the inclusions, the less effective they are in increasing
the out-of-plane shear modulus above that for the pure matrix material. An exception is
that prolate inclusions with | < & < 2 are actually somewhat more effective in reinforcing

40 ¥ o L LA ¥ Ll
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Fig. 7. Ratio A®/A®,,, for aligned inclusions and axisymmetric loading. as a function of aspect
ratio ¢ and modulus contrast T,
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Fig. 8. Ratio AD/AD,,, for aligned inclusions and in-plane shearing, as a function of aspect ratio §
and modulus contrast I,

against this mode of deformation than are spherical inclusions. For example, when I = 10,
the most effective inclusion shape is prolate with £ = 1.39, and such inclusions lead to a
stiffening which is 1.8% greater than that achieved with the same volume fraction of spheres.
It can also be seen from the figure that the ratio of the stiffening provided by non-spherical
inclusions to that provided by spherical inclusions decreases as the ratio of phase moduli
increases, and that at a given aspect ratio the stiffening provided by oblate inclusions is less
than that provided by prolate inclusions.

3. NON-LINEAR MATRIX BEHAVIOR

The constitutive relations presented above are restricted to linearly elastic composites.
Applications of two-phase composites often involve plastic deformation or creep of the
matrix, and in this scction we extend the constitutive theory to account for such behavior.
Attention is respected to composites comprised of a pure power-law matrix material
reinforced by rigid spheroidal inclusions. Approximate constitutive relations are obtained
for both randomly oricnted inclusions and for aligned inclusions by using a procedure
proposed by Ponte Castancda (1991). The resulting approximate constitutive relations are
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Fig. 9. Ratio A®/A®D,,, for aligned inclusions and out-of-plane shearing. as a function of aspect
ratio € and modulus contrast ",
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then assessed, at least tn a hmited way, by comparing predictions for the axisymmetric
deformation of a composite containing aligned inclusions with accurate results for this case
recently obtained by Lee and Mear (1991).

3.1. Description of matrix material and composite

The uniaxial stress—strain behavior of the matrix material is modeled using the pure
power-law relation ¢/, = (0.0,)" where o, and ¢, are a reference stress and strain, respec-
tively. This constitutive relation embodies a full range of matrix behavior, from the incom-
pressible linearly elastic material considered in Section 2 (for n = 1) to a rigid—perfectly
plastic matrix (as n — oc). The multi-axial behavior of the matrix material is described by

e 3f{a, Y '@
— =21z - 2
g 2 (00) [ (29)

which is the J,-deformation theory generalization of the uniaxial behavior. The potential
of the stress corresponding to (29), defined such that ¢ = d¢/cCo, is

41
$(0) = 22 (Gj : (30)

n+i a_o

We note that while the analysis will be carried out in terms of the non-linear hyperelastic
relation (29), the results also apply to a non-lincar viscous matrix material when strain
quantities are reinterpreted as strain-rate quantities. In this case, the constitutive relation
is a prototype for a material undergoing steady state creep.

To characterize the behavior of the composite material, we again consider a rep-
resentative block of volume ¥, which contains a distribution of spheroidal inclusions. The
outer surface of the block, S,, is subjected to tractions X -n where Z is the macroscopic
stress, and the corresponding macroscopic strain is defined in terms of the resulting dis-
placements on S, by (1). As for the lincar case, we choose to work in terms of the potential
for the composite rather than the tensorial components of stress and strain, and this
potential is given in terms of the local potential distribution by (2). Because the inclusions
are assumed to be rigid, the integral over the volume can be replaced by an integral over
the volume of the matrix V,,.

Toward establishing an approximation for the macroscopic potential ®, consider the
complementary minimum principle for deformation theory introduced by Hill (1956). For
our current application, the functional on which the principle is based can be expressed in
the form

Pa*) = J $(a*)dV (31)

where a*(x) is any statically admissible stress field. The actual stress field is distinguished
from all other admissible ficlds in that it renders £ its minimal value. It follows that an
upper bound on the macroscopic potential is given by

e*(X) = %W(d") (32)

and that the actual macroscopic potential satisfies

® = infd*. (33)

Estimates for ® could be constructed (numerically) by considering a class of admissible
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stress fields (i.e. trial functions) and seeking a minimum to # over these trial functions. An
estimate for ® would then be given by 2} ./}, where 23, denotes the minimum with respect
to the trial functions considered and is greater than or equal to the true minimum #2,,,.
Ponte Castaneda’s method differs from such a procedure in that it does not require that
trial functions be explicitly constructed. Instead, it requires only that a solution for a linearly
elastic matrix containing the same distribution of inclusions be known. In what follows. we
summarize the procedure for the case of current interest (see also the discussion given in
Appendix B); a more general discussion with applications to other types of constituent
behavior is given by Ponte Castaneda (1991).

3.2. Construction of approximate constitutive relations

To develop the procedure. assume that the solution for a comparison composite
comprised of a linearly elastic matrix with (as yet arbitrary) shear modulus G, is known,
and denote the potential for the linear matrix as ¢, = 67/(6G.). If we introduce a function
¥ according to

¢(a) = ¢.(a) -y (o), 34
then it follows that

|

r

ﬁ {$.(a*)~Y(o*)} dV. (35)

Although the integrand appearing in this latter relation is unknown, a bound on ® can be
obtained rather casily by replacing y(e) with the constant ¢ _, given by

Y. =sup{d. (o) - (o)} (36)

I (n=b)( a4 Y "
=6G. (n+ 1) (3;;;2;;) 37
where the explicit forms for the potentials ¢, and ¢ have been used. There then results
OO —(l-cW_ (38)

where @, is the macroscopic potential for the comparison composite which is known (by
assumption). Thus, a lower bound for ® can be obtained for any given G, > 0, and we now
scek the best such bound as

® > sup . —(I=cW_} =,. 39)

G >0

To solve the optimization problem (39), it is convenient to first write @, = ®_/(6G.)
where @, depends upon the macroscopic stress and the concentration, shape and distribution
of the rigid inclusions, but is independent of the shear modulus for the comparison matrix
material. Then, upon inserting the expression for  _ given by (37) into (39) and carrying
out the indicated operation, there results

(n+ 1) 2
£oT0 ' (‘E> . (40)

i) =
b —
Pl (=) \ g

Using this relation, a bound on the constitutive potential for a composite comprised of
rigid inclusions and a pure power-law matrix material (30) can be obtained, provided
that the exact constitutive potential for a linearly elastic matrix containing an equivalent
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distribution of rigid inclusions is known. If only an estimate for @, is available. then (40)
can only provide an estimate (rather than a bound) on the behavior of the non-linear
composite. In what follows, the constitutive potentials established in Section 2 for linear
composites are used in conjunction with (40) to provide approximate constitutive potentials
for non-linear composites in which the inclusions are randomly oriented or aligned.

3.2.1. Randomly oriented inclusions. Consider first randomly oriented rigid inclusions,
and assume that the inclusion spacing is such that the concentration can be considered
dilute when the matrix is elastic. The macroscopic potential for a linear matrix is given
exactly by (5)and (7). from which it follows that &, = (1 —cg)Z? where g = g(¢&. ) is given
by (26). Inserting ®, into (40), it is then found that

o ze LR
O, = E, "( ) @n

n+1\og

where E, is a reference strain for the composite (not to be confused with a Young's modulus)
given by

E" (l — cg)(ni» 02 ,
G g .

If the inclusion spacing is such that their interaction can be ignored for the non-lincar
matrix as well as for the lincar matrix, then it is appropriate to expand (42) for small ¢ and
retain only the terms which are lincar in ¢. This results in a dilute approximation for the
non-lincar composite given by

£y _

£y

Ll (43)

where

{(n+1) (n—1)
g— .

3 3 (44)

,l[,,[, =

Unfortunately, the procedure outlined above cannot be used to establish rigorous
bounds on the behavior of non-linear composites when the concentration of inclusions
exceeds dilute values (i.e. dilute for the elastic matrix). This is because only estimates are
available for @, rather than exact results. Nonetheless, estimates for ® applicable for non-
dilute concentrations can be easily constructed. One way to construct such estimates is to
use the bound for the dilute theory (43) in conjunction with the differential self-consistent
scheme outlined in Section 2 (see also Lee and Mear, 1991). The procedure is essentially
the same as for a linear matrix, and the resulting potential function for non-dilute con-
centrations has the form (41), with

Ey = eo(1 — ). 45

An alternative procedure is to start with the differential self-consistent estimate (10) for
which &, = (1 —¢)’Z2 and to then use (40) to obtain an estimate for the non-linear
matrix. The potential function obtained from this latter calculation is identical to the
potential obtained with the first procedure.
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The composite reference strain for non-dilute concentration of inclusions, eqn (45), is
shown in Fig. 10 as a function of aspect ratio for several volume fractions and two hardening
exponents. These approximate results for the reference strain indicate that, except for aspect
ratios in the range | < ¢ < 7.5, prolate inclusions are to be preferred to oblate inclusions
as stiffening agents. This is the same conclusion that was drawn for randomly oriented rigid
inclusions in a linear matrix [as expected from the form of (44)]. The results also predict
that the stiffening which results from a fixed volume fraction of inclusions is a strong
function of matrix non-linearity ; the stiffness of the composite relative to the matrix material
is much greater for a highly non-linear matrix material than for a linear matrix material.

3.2.2. Aligned inclusions. Consider now inclusions which are aligned and concentra-
tions which are sufficiently small so that interactions between inclusions are negligible when
the matrix is linear. In this case [see (11) and (15)]

6c = [l - cgalzaz + [l —Cgip]zé + [l -Cguplzvzp (46)
so that
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Fig. 10. Composite reference strain for randomly oriented rigid inclusions, E,, as a function of
aspect ratio ¢ and volume fraction of inclusions for n = 2 (a) and n = 10 (b).
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(D ——(1_.4!—!!)2 l‘— _;_u: ;l: EZZ (4 1)2 -
gih = (.) Cl Gu b3 +y1p 5 +yup £ ¢)(‘_P) (47)

where we have used £ = ]+ X.+Z7 . and where

"+l
$(Z,) = 220 (z> . (48)

n+1\o,

The functions g,. g, and g,, which appear in these relations are given by (21). (22) and
(23). respectively, with I' — 2. For future reference. we note that the quantity A®/AD,,
plotted in Fig. 7 is equivalent to g,/g,,» where g, = ¢g(1,T). and that Figs 8 and 9 can
similarly be interpreted as plots of ¢,,/¢.n and g,,/9,.n. We also note that for rigid inclusions
Ysph = 2.5.

Now, if the inclusions concentration is dilute for the non-linear matrix as well as for
the lincar matrix, then it is appropriate to expand (47) in powers of ¢ and retain only the
terms which are lincar in ¢. This results in a dilute theory for the non-linear composite given

by
—1 ! £} ) ..}
B = {1+<- (-l _ o) [.«/‘. (z> +9, <Z> +n (g—)]}m&). (49)

For the special case of axisymmetric loading (with the axis of loading oriented in the
dircction of inclusion alignment), the dilute theory for the non-lincar composite specializes
Lo

u y F00o A
®yp = (=l n+l\an (50)
0

where

b =D

W == 5" g, = (51)

It is apparent that the stiffening predicted to result from a dilute concentration of inclusions
is qualitatively the sume for non-linear and linear matrix materials. Specifically (see behavior
of g, shown in Fig. 7), it is predicted that prolate inclusions provide more stiffening than
do oblate inclusions when the comparison is made at a fixed aspect ratio and volume
concentration of inclusions. Similarly, an examination of the approximate constitutive
relation (49) specialized to in-plane or out-of-plane shearing reveals that the effect of
inclusion shape on the stiffening is qualitatively the same for non-lincar and lincar matrix
materials. Of course, the magnitude of the stiffening provided by a given concentration of
inclusions depends strongly upon the degree of matrix non-lincarity.

Finally, for concentration of inclusions which cannot be considered dilute for a lincar
matrix, an estimate for the constitutive potential can be obtained by using the estimates for
the linear composite moduli given by (16). Forming ®, for this case and using (40), it is
found that

2 2 2Yn+ 1)2
L {(l —cy (g") +(I =)~ (§E> + (=) (‘%ﬁ)} P(Z).  (52)

For the special case of axisymmetric loading, this relation specializes to
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+1
o, = (I —c)*’»i“"—“(§3) (53)

n+1\o,

and again it is predicted that prolate inclusions are to be preferred to oblate inclusions as
a means to stiffen the matrix material against axial deformation. Note that the effect of the
inclusions on the axial stiffness of the composite is predicted to be a strong function of
matrix non-linearity, and that the greater the non-linearity, the greater is the stiffening
provided by the inclusions.

3.2.3. Evaluation of approximate constitutive relations. The approximate constitutive
potentials for rigid inclusions in a power-law matrix material have been obtained using only
information about the constitutive behavior for linearly elastic composites. Since the flow
fields for an inclusion (or inclusions) in a non-linear matrix is expected to differ substantially
from the corresponding fields for a linear matrix, the accuracy of the approximations is
suspect, particularly for large hardening exponents. To make an assessment of the accuracy
of results obtained with Ponte Castaneda’s procedure, we now focus our attention on the
axisymmetric loading of a non-linear matrix stiffened by aligned rigid spheroidal inclusions.
For this case, accurate results for a dilute concentration of inclusions have recently been
obtained by Lee and Mear (1991), allowing a direct evaluation of the corresponding
predictions obtained above to be made. Lee and Mear also constructed differential self-
consistent estimates for non-dilutc concentrations of inclusions, but we will consider only
the dilute limit where Ponte Castaneda’s procedure is known to give a lower bound for @.

In their study, Lee and Mear modeled the behavior of the matrix material with the
multiaxial relation (29) and considered a wide range of shapes of rigid inclusion from oblate
with an aspect ratio of 10011 to prolate with an aspect ratio of 50: 1. It was demonstrated
that the potential for the composite has the form

. oy zﬂ +1
<D—Eu,;+l( ) (54)

where Ej = Ej(&,n,¢) is a reference strain for the composite and £, = [£,~Z,,] is the
macroscopic effective stress. The reference strain is given by

Eg = ﬁ()(l "-(',fu) (55)

where i, = h,(&,n) is a function which depends on the aspect ratio of the inclusions and
the hardening exponent, but not upon the remote foading.

The determination of the function A, requires the solution of a boundary value problem
for an isolated inclusion in the non-linear matrix. The solution to this kernel problem was
obtained using a spectral method based on Hill's (1956) functional of the displacements, as
modified by Budiansky et al. (1982) to render it applicable for infinite domains. In this
procedure, trial displacement functions were obtained using a displacement potential in
spheroidal coordinates, and a set of unknown coefficients appearing in the trial functions
was determined by minimizing the functional. Details are given in Lee and Mear (1991).
The values for A, obtained with the procedure are upper bounds and are belicved to be
accurate to within approximately 1%.

From (50), a lower bound on the reference strain is found to be given by

E5 = &o(l —chi) (56)

where Af, is given by (51). To compare hj, with the function A, obtained by Lee and Mear,
it is convenient to first scale them by
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bY . .
(‘;) . for prolate inclusions.
(57)

=
]

b
<c_z) . for oblate inclusions.

The function B corresponds to the volume of an inclusion for which ¢ = ¢* = (3/4m)' *, and
the functions 4, = Bh, and A%, = Bh{, can be interpreted as being associated with inclusions
of this fixed dimension a* rather than inclusions of unit volume. The scaled functions are
convenient because they remain bounded in the limit & — x (see also Lee and Mear, 1991).

The functions A, and A%, are plotted in Fig. 11a for n = 2 and in Fig. 11b for n = 10.
As can be seen, the accuracy of the bound deteriorates as the amount of matrix non-linearity
increases. This should be expected from the nature of the approximations involved in the
construction of the estimate. For spherical inclusions and n = 2, the estimates obtained
using Ponte Castaneda’s method differ from the accurate estimates by 15%, while for
spherical inclusions and n = 10 the difference is 55%. When n = 10 and the inclusions are
prolate with large aspect ratios, the estimates obtained with Ponte Castaneda’s procedure
are in error by more than 200%.

Duva (1984) has developed constitutive relations for a pure power law matrix (29)
stiffened by rigid spherical inclusions. His procedure is essentially that followed by Lee and
Mear (1991), and for dilute concentrations of inclusions and axisymmetric loading he
arrived at the constitutive relation (50) and (51) with ¢ = g(1, 0) = 2.5. To extend his
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Fig. 11. Functions &, = Sh, and ki, = Bhi, vs aspect ratio § for n = 2 (a) and n = 10 (b).
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constitutive theory to arbitrary remote stressing. he proposed that the influence of the third
invariant of £’ be neglected and that the potential (50) be retained with I, simply replaced
by Z.. Note that Ponte Castaneda’s (1991) procedure applied to spherical inclusions (or
more generally, to randomly oriented inclusions) gives rise to a constitutive potential which
is also a function of the effective stress only. This functional dependence on the stress is
imposed on the approximate constitutive potential by the use of a linear comparison solid
{Appendix B), yet a dependence on the third invariant of the macroscopic stress deviator
cannot be rule out a priori.

The accuracy of the estimate for spherical inclusions obtained with Ponte Castaneda’s
method has already been discussed for axisymmetric loading. If the influence of the third
invariant of the stress deviator is in fact negligible for this case. then the inaccuracy of the
approximate constitutive relations (41) and (43) for general loading is the same as for
axisymmetric loading. In particular, the accuracy of the predictions deteriorates rapidly
with increasing hardening exponent. Now, while accurate results are not currently available
for the constitutive behavior of non-linear composites comprised of randomly oriented
spheroidal inclusions, it should be expected that the accuracy of the approximate relations
for these cases will also deteriorate with increasing non-linearity. In addition, it is likely
that, as for aligned inclusions, the severity of the error will increase with increasing aspect
ratio.

4. CONCLUSIONS

Explicit constitutive relations have been established for incompressible, linear and non-
linear two-phase composites. The second phase has been assumed to be comprised of
spheroidal inclusions, and aligned inclusions (giving rise to a transversely isotropic com-
posite) as well as randomly oriented inclusions (giving rise to an isotropic composite) have
been treated.

The constitutive theorics developed for both lincar and non-lincar composites are valid
over the full range of aspect ratios, and have been used to explore the effect of inclusion
shape on the stiffness of two-phase composites. Attention has been restricted to cases in
which the stiffness of the sccond phase exceeds that of the primary phase (so that the
inclusions act as stiffening agents), and results have been presented for both dilute and non-
dilute concentrations of inclusions. We first summarize the findings for linear composites,
and then we discuss the extensions to non-lincar matrix behavior.

For isotropic lincarly clastic composites, it has been demonstrated that when the ratio
of the shear modulus for the inclusions to the shear modulus for the matrix is less than
66.8, oblate inclusions are always more effective stitfening agents than are prolate inclusions
when the comparison is made at the same aspect ratio. When the contrast in phase moduli
exceeds 66.8, however, there is a range of aspect ratios for which prolate inclusions are to
be preferred as stiffening agents. For example, when the shear modulus of the inclusions is
100 times that of the matrix material, this range of inclusion aspect ratios is approximately
11 < & < 48. As the contrast in phase moduli increases, the range of aspect ratios over
which prolate inclusions are to be preferred as stiffening agents also increases, and as the
mathematical limit of a rigid second phase is approached, the range of aspect ratios for
which prolate inclusions are the preferred stiffening agent is 7.5 < § < 0.

For transversely isotropic linearly elastic composites, the behavior is more complicated
because there are three independent moduli which are affected by the shape of the inclusions.
The moduli used to describe the behavior of the transversely isotropic composite are a
Young's modulus £, associated with uniaxial tension along the direction of alignment of
the inclusions (i.e. along the x;-axis shown in Fig. 1), a shcar modulus G,, associated with
shearing in the x,-x; plane, and a shear modulus G,,,, associated with shearing in the x,-x;
and x-x; planes.

It has been found that prolate inclusions are always to be preferred to oblate inclusions
as a means to increase the axial Young's modulus £,, with the degree of sensitivity to the
shape of the inclusions dependent on the contrast in phase moduli. The in-plane shear
modulus G, on the other hand, is enhanced by increasing the aspect ratio for oblate
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inclusions but diminished by increasing the aspect ratio tor prolate inclusions. The behavior
of the out-of-plane shear modulus is different : it is greatest when the inclusions have small
aspect ratios, and is significantly diminished by an increase in aspect ratio whether the
inclusions are tending to become more oblate or more prolate. Clearly. tailoring a composite
for increased resistance to one mode of deformation must be done with due regard to the
fact that it may diminish its performance in resisting other modes of detformation.

The extension of the constitutive relations to account for non-linear matrix behavior
has been carried out using a procedure proposed by Ponte Castaneda (1991). This procedure
exploits the solution to the kernel problem (i.e. the boundary value problem for an isolated
inclusion) for a linear matrix material rather than relying on the solution of a non-linear
kernel problem. Explhicit constitutive relations have been established for power-law matrix
materials containing rigid inclusions which are randomly oriented or aligned. When the
concentration of inclusions is sufficiently small. the constitutive relations are rigorous
bounds on the true behavior. For larger concentrations of inclusions this feature is lost.
and the results can only be considered estimates of the actual constitutive behavior.

To assess the predictions obtained with Ponte Castaneda’s scheme, results obtained
for the axisymmetric deformation of composites comprised of a dilute concentration of
rigid aligned inclusions have been contrasted with accurate results tor this case presented
by Lee and Mcar (1991). This comparison indicates that Ponte Castaneda’s scheme deteriorates
as the hardening exponent is increased, with large errors occurning tor 1 = 10, This is not
surprising since only information for an inclusion in a lincar matrix is used in the scheme.
Even though an optimization is carried out on the (arbitrary) shear modulus of the lincar
comparison medium, it is not possible to capture the details of the flow ficld for an inclusion
in & non-lincar matrix.

At present, accurate results are not available for the constitutive behavior of composites
when the sccond phase inclusions are randomly oriented. The constitutive relations obtained
using Ponte Castaneda’s procedure do give bounds (or estimates) on this behavior, but the
comparisons made for the case of aligned inclusions causes the accuracy of these relations
to be suspect. Development and evituation of constitutive relations for randomly oriented
and aligned clliptical inclusions in plane strain deformation are currently in progress, and
it is expected that these studies will provide additional qualitative information about the
accuracy of constitutive theories developed using Ponte Castaneda’s method,

Finally, we remark that the constitutive relations developed for lincar composites apply
for all contrasts in phase moduli (except for the limiting case of a vacuous sccond phase)
so that the cffect of inclusions which are softer than the matrix material on the constitutive
behavior could also be examined. In addition, Ponte Castaneda’s method can be used for
clastic inclusions (see Ponte Castaneda, 1991) in order to develop constitutive relations for
deformable inclusions in a non-linear matrix material.
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APPENDIX A

Local caordinate system

Let 1Y, X5 X be a fixed right handed Cartesian coordinate system, and let {vf.x%.x,} be a local right
handed coordinate system attached to an inclusion with the x -axis dicected along the axis of symmetry of the
inclusion. The axes x? and x? lic within the median plane of the inclusion but are otherwise arbitrarily oriented.
Consider a prescribed remote stress ¥ and let L denote the components of this stress tensor with respect to the
{xt X% x,] system.

Now imagine rotating the [x7, x?} axcs about the x, axis in order to obiain a (special) coordinate system
{1 X2 x,} which is distinguished from all other systems (i.c. other orientations of x?) in that in this new frame
L1y = X, That is, if the unit hase vectors for this new local coordinate system are {e,. e, €4}, then we choose ¥,
suchthat ¥, = Lo where Z,, s ¢ Lo, and Xy, = ey Xe,,

For convenience, most of the analysis presented in this paper has been carried out in this local frame, but to
apply the final results which have been obtained it is not necessary to actually determine the orientation of the x;
axis. This is because only effective stress quantities are involved in the expression of the macroscopic potential
(t1), and only the components of the prescribed uniform remote stress in terms of any local coordinate system
(¢ x x,} need to be determined in order to ¢valuate these quantitics. 1t is casily verified that

. = +IY
5= ( 4 - LA‘L,’, A?::.!) (Al)
5 = MUEH —E8 + I (AY)
and
L = HEIN+IN) (AY)

where, again, the 3 denote the components of ¥ in any coordinate system for which the x; axis is along the axis
of the inclusions.

Eshelby's tensor

The components of Eshelby’s tensor for spheroidal regions ¥, can be expressed in terms of clementary
functions and are given in Eshelby (1957). For an incompressible matcerial, these components depend only upon
whether the inclusion is a prolate or an oblate spheroid and upon the aspect ratio & We list only terms which are
relevant to the current application.

For prolate inclusions :

13

983 =338 + (& =1)" " cosh~ ' &

S!)II"S.\!IJ = 1(5:_”2 (Ad)
H i s apre? S “t 2
Sn,:=é-8(§:‘1}2{2+€'—3g(g'—” Y2 cosh SC} {AS)
4+ et are sl " ik
Suu=S:ns=4——‘"~:E;_”:{2+C"'3¢(C’~'U"‘Cosh Y&y (A6)

For oblate inclusions:
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APPENDIX B

In this Appendix. a generalization of Ponte Castaneda’s (1991) procedure for obtaining bounds (or estimates)
for the effective properties of non-linear two-phase composites is given. While Ponte Castaneda’s technique relies
on a linear comparison solid (for which a macroscopic potential is assumed known), the generalization presented
here begins with the assumption that the macroscopic potential is known for a non-linear comparison solid. This
generalization has less practical utility than the original procedure. but forms the basis for discussion about the
structure of the approximate constitutive relations and how this structure is tied to the structure of the comparison
solid (rather than necessarily to the actual structure of the non-linear constitutive relation).

In the development, attention is restricted to power-law matrix materials (29) reinforced by a random
distribution of rigid spheroidal inclusions, and the composites considered are assumed to be macroscopically
homogeneous and isotropic. The macroscopic constitutive behavior for such composites can be described by a
potential of the stress

Eg¥g
LR

Q= H{L/a,} {Bl)

where, for a given shape of the inclusion, the function H depends on the hardening exponent of the matrix material
in addition to the macroscopic stress. In the following, we will use the notation @, and H, in place of ® and H in
order to explicitly indicate this dependence on the hardening exponent n. Since the composite is isotropic, H
depends upon the stress only through the second and third invariunts of the stress deviator X', Further, since the
matrix obeys the power-law relation (29) and the inclusions are rigid, # must be homogencous of degree (n+ 1)
in the stresses,

Now, consider a (comparison) solid characterized by the potential

£y [0, !
IRV (s B2
¢n m+l(au) (B2

where ¢, is a reference strain. The macroscopic potential for the non-linear comparison solid is given by

£.8y

= % (Ya, 3
o, il 1 (E/a0) (B3)

and we assume that #,, is known for the aspect ratio and distribution of inclusions of interest. What is sought is
a bound on the potential of a composite which has the same morphology of the second phase but which is
comprised of a matrix material governed by
£.0 g, X
¢, = -l'-il( ) . (B4)

n+1\a,

Such a bound can be obtained following a procedure similar to that discussed in Section 3. Define ¢ = ¢, — 6,
and then form

Y. = - (n—mj AR y
--S:F"ﬁ-—aoao(n+l)(m+l) 2o (85)

where (B2) and (B4) have been used. It then follows that [see discussion near (38)]
D, 20, ~(1-0_ (B6)

and the best such bound is obtained by choosing &, > 0 such that the right-hand side of the relation is maximized,
The result of the calculation is

l—c[ H, Jrenmen
o, > 8odgm[m] (B7)

and, by comparing this relation with (B1), we find

H‘" (w4 Eli(me 1)
H, 2 —C)[a‘:‘c_)] = Hyp (B8)
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Thus. given that the macroscopic potential is known for one value of the hardening exponent (e.g. from a detailed
numerical calculation), a lower bound on the potential for another value of the hardening exponent can be easily
obtained.

In the special case in which the comparison solid is elastic (i.e. m = 1) we find

G.(Z\
(%) -

G,,. m+ 12 x' +1
Hy = (1 _C)[Eﬂ] (;;) . (B10)

This corresponds to Ponte Castaneda’s original scheme [cf. (41) and (42)] as should be expected. Note that the
procedure gives a bound (or an estimate if an approximate result is used for G rather than an exact result) for the
macroscopic potential which is a function of only the second invariant of the stress deviator. This structure is
forced upon the approximate constitutive relation by the choice of comparison solid. but does not necessarily
correspond to the structure of the exact constitutive relation.

For axisymmetric stress states, the macroscopic potential depends only on the effective stress and can be

written as
¥ !
H= F(J) (Bl
)

where the function F depends only on the aspect ratio of the inclusions and the hardening exponent. Assuming
that £, is known (corresponding to a comparison solid with hardening exponent m), then (B8) can be used to

obtain
F, Joewmen
F,2( —c)[———] (B12)

s0 that

(1-¢)

corresponding 1o a composite with hardening exponent s, [n this instance, the bound on the constitutive potential
does in fact retain the proper functional dependence on the stress.

Other special cases of loading can be treated similarly to the case of axisymmetric deformation just discussed.
For general loading, however, it may not be possible to explicitly state the dependence of # on the invariants of
the stress deviator. The relation (BR) represents a bound on the constitutive behavior of the composite, but it does
not necessarily predict (or preserve) the correct structure of the constitutive relation in terms of the stress, As
already discussed, the procedure developed by Ponte Castaneda (1991) uses a linear comparison solid and this
torces the Functional form of the macroscopic potential to be in terms of only the effective stress,



